Cks1 is required for G(1) cyclin-cyclin-dependent kinase activity in budding yeast.

نویسندگان

  • G J Reynard
  • W Reynolds
  • R Verma
  • R J Deshaies
چکیده

p13(suc1) (Cks) proteins have been implicated in the regulation of cyclin-dependent kinase (CDK) activity. However, the mechanism by which Cks influences the function of cyclin-CDK complexes has remained elusive. We show here that Cks1 is required for the protein kinase activity of budding yeast G(1) cyclin-CDK complexes. Cln2 and Cdc28 subunits coexpressed in baculovirus-infected insect cells fail to exhibit protein kinase activity towards multiple substrates in the absence of Cks1. Cks1 can both stabilize Cln2-Cdc28 complexes and activate intact complexes in vitro, suggesting that it plays multiple roles in the biogenesis of active G(1) cyclin-CDK complexes. In contrast, Cdc28 forms stable, active complexes with the B-type cyclins Clb4 and Clb5 regardless of whether Cks1 is present. The levels of Cln2-Cdc28 and Cln3-Cdc28 protein kinase activity are severely reduced in cks1-38 cell extracts. Moreover, phosphorylation of G(1) cyclins, which depends on Cdc28 activity, is reduced in cks1-38 cells. The role of Cks1 in promoting G(1) cyclin-CDK protein kinase activity both in vitro and in vivo provides a simple molecular rationale for the essential role of CKS1 in progression through G(1) phase in budding yeast.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cyclin-dependent kinase and Cks/Suc1 interact with the proteasome in yeast to control proteolysis of M-phase targets.

Cell cycle-specific proteolysis is critical for proper execution of mitosis in all eukaryotes. Ubiquitination and subsequent proteolysis of the mitotic regulators Clb2 and Pds1 depend on the cyclosome/APC and the 26S proteasome. We report here that components of the cell cycle machinery in yeast, specifically the cell cycle regulatory cyclin-dependent kinase Cdc28 and a conserved associated pro...

متن کامل

Regulation of B-type cyclin proteolysis by Cdc28-associated kinases in budding yeast.

In budding yeast, stability of the mitotic B-type cyclin Clb2 is tightly cell cycle-regulated. B-type cyclin proteolysis is initiated during anaphase and persists throughout the G1 phase. Cln-Cdc28 kinase activity at START is required to repress B-type cyclin-specific proteolysis. Here, we show that Clb-dependent kinases, when expressed during G1, are also capable of repressing the B-type cycli...

متن کامل

Cdc28 Activates Exit from Mitosis in Budding Yeast

The activity of the cyclin-dependent kinase 1 (Cdk1), Cdc28, inhibits the transition from anaphase to G1 in budding yeast. CDC28-T18V, Y19F (CDC28-VF), a mutant that lacks inhibitory phosphorylation sites, delays the exit from mitosis and is hypersensitive to perturbations that arrest cells in mitosis. Surprisingly, this behavior is not due to a lack of inhibitory phosphorylation or increased k...

متن کامل

Phosphorylation of the Sic1 inhibitor of B-type cyclins in Saccharomyces cerevisiae is not essential but contributes to cell cycle robustness.

In budding yeast, B-type cyclin (Clb)-dependent kinase activity is essential for S phase and mitosis. In newborn G(1) cells, Clb kinase accumulation is blocked, in part because of the Sic1 stoichiometric inhibitor. Previous results strongly suggested that G(1) cyclin-dependent Sic1 phosphorylation, and its consequent degradation, is essential for S phase. However, cells containing a precise end...

متن کامل

Kinetic analysis of the cyclin-dependent kinase-activating kinase (Cak1p) from budding yeast.

Cak1p, the Cyclin-dependent kinase-activating kinase from budding yeast, is an unusual protein kinase that lacks many of the highly conserved motifs observed among members of the protein kinase superfamily. Cak1p phosphorylates and activates Cdc28p, the major cyclin-dependent kinase (CDK) in yeast, and is thereby required for passage through the yeast cell cycle. In this paper, we explore the k...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular and cellular biology

دوره 20 16  شماره 

صفحات  -

تاریخ انتشار 2000